

Environment and Natural Resources Trust Fund

M.L. 2024 Approved Work Plan

General Information

ID Number: 2024-057

Staff Lead: Lisa Bigaouette

Date this document submitted to LCCMR: June 6, 2024

Project Title: Characterization of Chemicals in Structural Fire Wastewater

Project Budget: \$369,000

Project Manager Information

Name: Grace Wilson

Organization: U of MN - College of Food, Agricultural and Natural Resource Sciences

Office Telephone: () -

Email: wils0674@umn.edu

Web Address: https://cfans.umn.edu/

Project Reporting

Date Work Plan Approved by LCCMR: June 20, 2024

Reporting Schedule: June 1 / December 1 of each year.

Project Completion: July 31, 2026

Final Report Due Date: September 14, 2026

Legal Information

Legal Citation: M.L. 2024, Chp. 83, Sec. 2, Subd. 04b

Appropriation Language: \$369,000 the second year is from the trust fund to the Board of Regents of the University of Minnesota to identify, analyze, and model the fate of chemicals present in wastewater from extinguished structural fires to better understand potential toxicity to humans and aquatic life.

Appropriation End Date: June 30, 2027

Narrative

Project Summary: The wastewater from extinguishing structural fires will be analyzed to identify and characterize chemicals present and better understand potential toxicity to humans and water systems.

Describe the opportunity or problem your proposal seeks to address. Include any relevant background information.

Water used to extinguish structural fires may be a significant source of toxic chemicals into Minnesota's waters. During a structural fire, building and household materials (especially vinyl materials) undergo chemical transformations under the extreme fire temperatures. Some of these chemicals can become mobile in the water used in extinguish the fire, and are then transported into storm drains and water systems. In addition to contaminant sources from the fire itself, the effluent (described by first responders as resembling "black sludge"), may also transport toxic PFAS chemicals found in fire-fighting foams. First-responders are also exposed to these chemicals while on the scene, and may transport them on their clothing, gear, personal protective equipment. Chemicals generated during burning and those used in fire-fighting foams are categorized as persistent organic pollutants (or POPs), and are known to be very slow to breakdown in the environment while also being extremely toxic to humans and aquatic ecosystems. However, there has been little research into the specific types and the amounts of these chemicals in the water effluent following fires. A better characterization of the chemicals found in fire wastewater is needed in order to identify and address potential toxicity to humans and aquatic systems.

What is your proposed solution to the problem or opportunity discussed above? Introduce us to the work you are seeking funding to do. You will be asked to expand on this proposed solution in Activities & Milestones.

We propose to characterize the chemicals found in the wastewater resulting from extinguishing structural fires by:

- 1. Identifying the presence and amounts of toxic chemicals in fire wastewater
- 2. Analyzing the timing of chemical release into the water during a live fire event
- 3. Modelling the fate and transport of these chemicals in storm water systems

What are the specific project outcomes as they relate to the public purpose of protection, conservation, preservation, and enhancement of the state's natural resources?

This work will identify and characterize contaminants that are present in firefighting wastewater. This includes identifying the presence and amount of those that are known to be toxic to humans (carcinogens, endocrine disrupters, etc), as well as those that can also damage aquatic ecosystems. We will also make predictions on the amounts of these chemicals delivered to receiving waterbodies (including rivers, ponds, and other waters) after considering potential degradation or transformation. Initial identification and characterization of these chemicals is necessary in order to better understand their effect on human and aquatic ecosystem health.

Project Location

What is the best scale for describing where your work will take place?

County(s): Hennepin, Ramsey,

What is the best scale to describe the area impacted by your work? Statewide

When will the work impact occur?

During the Project and In the Future

Activities and Milestones

Activity 1: Identify chemicals present in fire wastewater

Activity Budget: \$209,744

Activity Description:

The wastewater resulting from fighting structural fires will be analyzed to determine the concentrations of chemicals known to be toxic to humans and aquatic systems, including heavy metals and persistent organic pollutants. We will test for toxic chemicals likely to be found in the fire-water effluent, including: per- and poly-fluoroalkyl substances (PFAS) used in fire-fighting foams, polychlorinated dioxins and furans (by-products formed when PVC plastics burn), heavy metals (used in structural components of buildings), and polyaromatic hydrocarbons (formed during combustion of materials used in household items). Sample kits will be provided to partnering firefighting agencies (including the Minneapolis and St. Paul Fire Departments), and fire fighters on the scene will take grab samples of this water following structural fires. These samples will be delivered to a laboratory and analyzed to determine the concentrations of the chemicals identified above. The total amount of the chemical in the wastewater will be calculated based on measured concentrations and estimates of water volumes used at the fire. Additionally, 2-3 chemicals from the full list will undergo further analysis to characterize decomposition. For this, the water sample will be subdivided, and some of the samples will be sent in for analysis on a time-lagged basis.

Activity Milestones:

Description	Approximate
	Completion Date
Prepare sample collection kits, distribute to partnering fire agencies, and train fire personnel	October 31, 2024
Identify chemicals present and their concentrations from approximately 15 wastewater grab samples	December 31, 2025
from fire scenes	
Estimate total chemical load in this effluent	December 31, 2025
Determine decomposition and chemical transformation of select contaminants from effluent	December 31, 2025

Activity 2: Analyze the chemicals present and timing of their release into stormwater systems during a live fire

Activity Budget: \$123,886

Activity Description:

Samples of wastewater from a structural fire will be collected at different times during a fire-fighting exercises. This data collection will occur during training exercises either at planned burns of houses (ideal), or the East Metro Public Safety Training Center (located in Maplewood, MN). In coordination with partnering fire-fighting agencies, researchers will setup collection devices at the controlled burn, and take water samples and measurements of flow at set times during the fire scenario. These samples will be analyzed to determine chemical species present in the water and their concentrations (as in Activity 1). This data will provide a detailed picture of how concentrations of chemicals in the fire wastewater change over the course of fighting a fire. Estimates of the flow rate of the effluent will also be taken so that the total load of the chemicals can be calculated. These samples will be analyzed for the same constituents identified in Activity 1. Samples from at least 1 controlled burn will be taken; ideally we will be able to collect samples from 2-3 controlled burns.

Activity Milestones:

Description	Approximate Completion Date
Determine the time-response of chemical release into waters during fire-fighting efforts	May 31, 2026
Identify chemicals present and their concentrations in fire-water effluent from a controlled burn	May 31, 2026

Report distributed to Minnesota Department of Public Safety State Fire Marshal Division summarizing	July 31, 2026
results	
Presentations given and fact-sheets distrubted to stormwater management agencies and fire	July 31, 2026
departments	

Activity 3: Model the fate and transport of chemicals released into waters from structural fires **Activity Budget:** \$35,370

Activity Description:

Data from activities 1 and 2 will be used to model the fate and transport of water-born chemicals resulting from firefighting activity. Modeling will be limited to those chemicals selected for determining the rates of decomposition in Activity 1. These rates will be modeled using a first-order process or other relatively simple relationships. The resulting equations will be used to develop a spreadsheet tool that estimates the chemical load to receiving surface water bodies. This spreadsheet tool will account for the initial mass of the chemical entering the stormwater system (including the water volume from fire-fighting and the initial concentration of the chemical expected in the effluent), as well as changes in its concentration due to decomposition or chemical transformation (including soprtion and volatilization processes) and dilution in the storm drain from lateral flow or precipitation events. Given these variables, and an estimate of the length of the storm drain and travel time, we will be able to estimate the total discharge of the chemical into receiving surface water bodies.

Activity Milestones:

Description	Approximate Completion Date
Decomposition/transformation model for selected chemicals	July 31, 2026
Spreadsheet tool that calculates chemical delivered at downstream locations considering lateral flow	July 31, 2026
and chemical transformations	

Project Partners and Collaborators

Name	Organization	Role	Receiving Funds
Matt Simcik	University of	Co-principal investigator for the proposed research; will work with sample	Yes
	Minnesota	collection design and analysis and general grant management	
Barton Inks	St. Paul Fire Department	The St. Paul Fire Department is a partner organization which will collect water samples for the study. As fire chief, Barton Inks will work with the researchers to facilitate sample collection by staff at the St. Paul Fire Department.	No
Bryan Tyner	Minneapolis Fire Department	The Minneapolis Fire Department is a partner organization which will collect samples for the study. As fire chief, Bryan Tyner will work with the researchers to facilitate sample collection by staff at the Minneapolis Fire Department.	No

Dissemination

Describe your plans for dissemination, presentation, documentation, or sharing of data, results, samples, physical collections, and other products and how they will follow ENRTF Acknowledgement Requirements and Guidelines. The team will give open scientific presentations and publish scientific papers addressing the project objectives. Additionally, the team will provide a summary of the key results in the form of fact-sheets and presentations to the partnering fire-fighting agencies as well as other interested government units (such as Minnesota Department of Public Safety State Fire Marshal Division)

Long-Term Implementation and Funding

Describe how the results will be implemented and how any ongoing effort will be funded. If not already addressed as part of the project, how will findings, results, and products developed be implemented after project completion? If additional work is needed, how will this work be funded?

The team will give open scientific presentations and publish scientific papers addressing the project objectives. We expect to achieve the stated objectives of this project within the bounds of this grant timeline. However, there has been little previous research in this area, and results of this work may indicate additional research is necessary to fully characterize the chemicals, their transport, and to consider mitigation strategies. Any additional work will be funded by separate grants after completion of the deliverables from this project.

Budget Summary

Category / Name	Subcategory or Type	Description	Purpose	Gen. Ineli	% Bene	# FTE	Class ified	\$ Amount
Derconnol				gible	fits		Staff?	
Personnei					26.00/	0.2		¢20.070
Faculty		Manage project and consult on analysis of results;			36.8%	0.2		\$38,879
Pesearcher		Conduct analysis of results: manage sample			26.8%	1		\$102.600
Researcher		collection: general grant management			50.870	1		\$102,000
Graduate		Provide research support and data analysis support			24.1%	0.15		\$22.115
Student					-			. , -
Undergraduate		research support; position would pay 1			0%	0.75		\$21,600
Reseacher		undergraduate 25% time during academic year; 2						
		students 75% over the summer						
							Sub Total	\$185,194
Contracts and								
Services								
TBD, likely SGS	Professional	Analyzing water samples for specified chemicals and				2		\$177,908
AXYS	or Technical	reporting results to researchers. Includes persistent						
Analytical	Service	organic pollutants (PAHs, PBDEs, PCBs, PCDD/F,						
Services	Contract	PFAS), and heavy metals. Contract will be awarded						
		to lab facility used by US Dept of Defense which use						
		EPA certified methods to test for the list of analytes.						4477.000
							Sub Total	\$177,908
Equipment.								
Tools, and								
Supplies								
	Tools and	Sample Collection kits (coolers, water collection	Collect water samples. Each kit costs					\$4,000
	Supplies	bottles, ice packs)	\$100 x 40					
	Tools and	Materials to sample water from controlled burn	Items will be used to collect water					\$1,000
	Supplies	(sampling bottles, equipment to funnel water to	samples from a controlled burn					
		sampling location)			-			¢500
	Tools and	Extra sampling bottles and sampling supplies	Additional sampling bottles to use in					\$500
	Supplies						Cub	¢г гоо
							Total	\$5,500
Canital							Total	
Expenditures								

					Sub	-
					Total	
Acquisitions						
and						
Stewardship						
					Sub	-
					Total	
Travel In						
Minnesota						
	Miles/ Meals/	4 trips with a rented University fleet truck or large	Carry supplies to controlled burns			\$398
	Lodging	van @ \$70/day				
					Sub	\$398
					Total	
Travel Outside						
Minnesota						
					Sub	-
					Total	
Printing and						
Publication						
					Sub	-
					Total	
Other						
Expenses						
					Sub	-
					Total	
					Grand	\$369,000
					Total	

Classified Staff or Generally Ineligible Expenses

Category/Name	Subcategory or	Description	Justification Ineligible Expense or Classified Staff Request
	Туре		

Non ENRTF Funds

Category	Specific Source	Use	Status	\$ Amount
State				
			State Sub	-
			Total	
Non-State				
			Non State	-
			Sub Total	
			Funds	-
			Total	

Attachments

Required Attachments

Visual Component File: <u>12813f19-ee0.pdf</u>

Alternate Text for Visual Component

The graphic shows a structural fire with a firefighter putting out the blaze. Water is shown leaving the fire and entering a wetland. A magnifying glass is shown zooming in on the water from the fire, and showing toxins leaving the fire in that water entering the wetland....

Supplemental Attachments

Capital Project Questionnaire, Budget Supplements, Support Letter, Photos, Media, Other

Title	File
Support Letter-Minneapolis Fire	<u>7523fd31-289.pdf</u>
Support Letter-St Paul Fire	<u>8114407f-b70.pdf</u>
UMN PRF	<u>1f5ce179-b3d.doc</u>
Research Addendum revised 2024-057_final	d59c2edc-b28.pdf

Difference between Proposal and Work Plan

Describe changes from Proposal to Work Plan Stage

Updated May 2024: Added information to milestone in Activity 1 specifying that approximately 15 samples will be analyzed; additional information also added to Activity 2 to specify that we will collect samples from at least 1 controlled burn, ideally 2-3 controlled burns. Added information to Activity 3 specifying that the project will examine the effects of volitalization/soprtion processes on chemical concentrations in storm drains, as well as the impact of lateral flow and precipitation. Modified Milestone in Activity 3 to specify this information as well. Added a milestone to Activity 2 specifying that presentations and factsheets of study findings will also be given to stormwater management agenies

Updated October 2023: Added new information to budget and milestones to address comments. Added Milestone to Activity 2 to indicate a report summarizing the results will be distributed to State Fire Marshall and other local departments. Added Milestone to Activity 1 to indicate timing of preparation of sample kits and training of fire personnel. Included in the budget (professional/technical contracts) how contracts will be awarded and what chemicals will be tested

Updated August 2023: A key difference between the submitted and original workplan is that the deadline for Milestones in Activity 1 was changed from October 2025 to December 2025 to allow for more time for sample collection from structural fires (and ideally ensure that the we are able to collect the number of desired samples). Additional information was added to the Dissemination plan as well.

Additional Acknowledgements and Conditions:

The following are acknowledgements and conditions beyond those already included in the above workplan:

Do you understand and acknowledge the ENRTF repayment requirements if the use of capital equipment changes? N/A

Do you agree travel expenses must follow the "Commissioner's Plan" promulgated by the Commissioner of Management of Budget or, for University of Minnesota projects, the University of Minnesota plan? Yes, I agree to the UMN Policy.

Does your project have potential for royalties, copyrights, patents, sale of products and assets, or revenue generation?

No

- Do you understand and acknowledge IP and revenue-return and sharing requirements in 116P.10? N/A
- Do you wish to request reinvestment of any revenues into your project instead of returning revenue to the ENRTF? N/A
- Does your project include original, hypothesis-driven research? Yes
- Does the organization have a fiscal agent for this project?

Yes, Sponsored Projects Administration

Does your project include the pre-design, design, construction, or renovation of a building, trail, campground, or other fixed capital asset costing \$10,000 or more or large-scale stream or wetland restoration? No

Do you propose using an appropriation from the Environment and Natural Resources Trust Fund to conduct a project that provides children's services (as defined in Minnesota Statutes section 299C.61 Subd.7 as "the provision of care, treatment, education, training, instruction, or recreation to children")?

No